A Novel Population of Mesenchymal Progenitors with Hematopoietic Potential Originated from CD14- Peripheral Blood Mononuclear Cells
نویسندگان
چکیده
Hemopoietic system derived progenitor cells with mesenchymal features have been identified including CD14(+) monocyte-derived progenitors. However, it is unclear whether there are mesenchyme derived progenitors with hematopoietic potential. Herein, we identified a novel CD14(-) cell-derived population with both mesenchymal and hematopoietic features in rat peripheral blood, and this cell population is different from the CD14(+) monocyte-derived progenitors but designated peripheral blood multipotential mesenchymal progenitors (PBMMPs). Phenotype analysis demonstrated expression of mesenchymal markers in PBMMPs including BMPRs, Endoglin/CD105, Fibronectin (Fn), Vimentin (Vim), Collagen (Col) I/II/III along with hematopoietic marker CD34. CD14(+) cell-derived population shared the same characteristics with CFs. In mixed culture of CD14(+) and CD14(-) cells, PBMMPs were a predominant component and expressed CD29(high), CD73(high), CD34(high), CD45(low) and CD90. Except for the value of mixed T lymphocytes and CD14(+) cell-derived population, hematopoietic characters of cultured PBMMPs were indicated by CD14(-)/CD34(+)/CD45(-)/CD90(+). The mesenchymal origin was further confirmed by comparing PBMMPs with bone marrow stromal cells. Finally, we transplanted PBMMPs into a skin wound model, and results showed the specific potential of PBMMPs in not only extracellular matrix secretion but epidermal regeneration. This study provides evidence that peripheral blood contains common hematopoietic-mesenchymal progenitors from both hematopoietic and mesenchymal lineages, and CD34(+) mesenchymal progenitors are a possible alternative source of epidermal cells in wound healing.
منابع مشابه
The Effects of Dental Pulp Stem Cell Conditioned Media on the Proliferation of Peripheral Blood Mononuclear Cells
Background: Dental Pulp Stem Cells (DPSCs) are multipotent mesenchymal stem cells. DPSCs can renew themselves and differentiate into various cell types such as adipocytes, osteocytes, neurons, etc. DPSCs possess immunomodulatory properties and can inhibit peripheral blood mononuclear cell (PBMC) proliferation. Recent studies showed that conditioned-medium mesenchymal stem cells also had immunos...
متن کاملPeripheral Blood-Derived Mesenchymal Stem Cells: Growth Factor-Free Isolation, Molecular Characterization and Differentiation
Background and Objectives: The mesenchymal stem cells derived from peripheral blood (PB) have been recognized as a promising source for allogeneic cell therapy. The aim of this study was to investigate the isolation, growth and differentiation ability of peripheral blood-isolated mesenchymal stem cells. Methods: The mononuclear cells were purified from fr...
متن کاملEnriching hematopoietic, endothelial and mesenchymal functional progenitors by short-term culture of steady-state peripheral blood mononuclear cells obtained from healthy donors and ischemic patients.
BACKGROUND Non-mobilized peripheral blood contains mostly committed cells with limited numbers of early progenitors. OBJECTIVES To enrich functional progenitor cells from healthy donors and ischemic heart disease patients by short-term culture of mononuclear cells with defined culture conditions. METHODS Mononuclear cells obtained from healthy donors and ischemic heart disease patients were...
متن کاملGene Expression Profile of Adherent Cells Derived From Human Peripheral Blood: Evidence of Mesenchymal Stem Cells
Mesenchymal stem cells (MSCs) provide a novel option in cellular therapy and tissue engineering. Recent studies indicated that it is possible to obtain MSCs from peripheral blood by attachment ability to plastic surface. To evaluate adherent cells derived from peripheral blood, their expression profile and surface markers were investigated. The results of RT-PCR indicated that these cells expre...
متن کاملEXPANSION OF HUMAN CORD BLOOD PRIMITIVE PROGENITORS IN SERUM-FREE MEDIA USING HUMAN BONE MARROW MESENCHYMAL STEM CELLS
Ex vivo expansion of human umbilical cord blood cells (HUCBC) is explored by several investigators to enhance the repopulating potential of HUCBC. The proliferation and expansion of human hematopoietic stem cells (HSC) in ex vivo culture was examined with the goal of generating a suitable clinical protocol for expanding HSC for patient transplantation. Using primary human mesenchymal stem ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2010